The Magic Inside Bunnie’s New NeTV

A year ago, what was probably the most important Pastebin posting ever was released by an anonymous hacker. The HDCP master key gave the ability for anyone to derive the keys protecting the link between DVD players and TVs. There was no possibility of revocation. The only remaining question was, “who would be the first to deploy this key in an HDCP stripper?”

Last week, the HDCP master key was silently deployed, but surprisingly, not in a stripper or other circumvention device. Instead, it’s enabling a useful new system called the Chumby NeTV. It was created by Bunnie Huang, who is known for inventing the Chumby and hacking the Xbox. He’s driving down the cost of TV-connected hardware with a very innovative approach.

The NeTV displays Internet apps on your TV. You can see Twitter feeds, view photos, and browse the web via an on-screen display. It overlays this information on your video source. You can control it from your iPhone or Android phone. It’s simple to install since you merely plug it inline with your cable box or DVD player’s HDMI connection to the TV. And in true Bunnie fashion, the hardware and software is all open source.

When I first heard of this last week, I didn’t think much of it. It’s a neat concept, but I don’t have an HDTV. Then, a friend contacted me.

“Have you figured out how the NeTV works? There’s a lot of speculation, but I think I’ve figured it out,” he said. I told him I hadn’t thought much about it, then downloaded the source code to the FPGA to take a look.

I was surprised to find an entire HDCP implementation, but it didn’t quite make sense. There was no decryption block or device keys. I emailed Bunnie, asking how it could do alpha blending without decrypting the video. He wrote back from a plane in Tokyo with a cryptic message, “No decryption involved, just chroma key.”

This was the hint I needed. I went back and watched the demo video. The overlay was not transparent as I had first thought. It was opaque. To do alpha blending, you have to have plaintext video in order to mask off the appropriate bits and combine them. But to apply an opaque overlay, you could just overwrite the appropriate video locations with your substituted data. It would require careful timing, but no decryption.

Chroma key (aka “blue/green screen”) uses color for in-band signaling. Typically, an actor performs in front of a green screen. A computer (or a filter, in the old days) substitutes data from another feed wherever there is green. This is the foundation of most special effects in movies. Most importantly, it is simple and can be performed quickly with a minimum of logic.

The NeTV generates its output signal by combining the input video source and the generated overlay with this same technique. The overlay is mostly filled with pixels of an unusual color (Bunnie called it “magic pink”). The FPGA monitors the input signal position (vertical/horizontal sync, which aren’t encrypted) to know where it is within each frame of video. When it is within the pink region of the overlay, it just passes through the encrypted input video. Otherwise, it displays the overlay. The HDCP implementation is needed to encrypt the overlay, otherwise this part of the screen will be scrambled when the TV tries to decrypt it. But, indeed, there is no decryption of the input content.

This is impressive work, on par with the demoscene. The NeTV synchronizes with every frame of video, no jitter, choosing which pixel stream to output (and possibly encrypt) on-the-fly. But there’s more.

To generate the keystream, the NeTV has to synchronize with the HDCP key exchange between video source and TV. It replicates each step of the process so that it derives the correct stream key. To keep any timing issues with the main CPU from delaying the key exchange, it resets the link after deriving the shared key to be sure everything is aligned again. Since the transport key only depends on the two endpoint device keys, the same shared key is always used.

This is extremely impressive from a technical standpoint, but it’s also interesting from a content protection standpoint. The NeTV has no device keys of its own; it derives the ones in use by your video source and TV as needed. It never decrypts video, only encrypts its on-screen display to match. It can’t easily be turned into an HDCP stripper since that would require a lot of rework of the internals. (The Revue, with its HDMI transceiver chip and Atom processor could probably be turned into an HDCP stripper with a similar level of effort.)

Bunnie has done it again with a cheap device that applies his extensive creativity to not just solve a problem, but do it in style. Whatever the outcome of his maverick engineering is in the marketplace, the internals are a thing of beauty.

One thought on “The Magic Inside Bunnie’s New NeTV

  1. That really is very impressive. Even just the idea of overlaying images via a passthru box like that is pretty clever, but the way he’s done it here is especially ingenious. (And I think it really shows one of the downsides of DRM – this kind of technology could have been around for a while already if not for HDCP getting in the way!)

Comments are closed.